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Abstract—This paper discusses an approach to using the
Cramer Rao Lower Bound (CRLB) as a trajectory design tool
for autonomous underwater vehicle (AUV) visual navigation. We
begin with a discussion of Fisher Information as a measure of the
lower bound of uncertainty in a simultaneous localization and
mapping (SLAM) pose-graph. Treating the AUV trajectory as
an non-random parameter, the Fisher information is calculated
from the CRLB derivation, and depends only upon path geometry
and sensor noise. The effect of the trajectory design parameters
are evaluated by calculating the CRLB with different parameter
sets. Next, optimal survey parameters are selected to improve
the overall coverage rate while maintaining an acceptable level
of localization precision for a fixed number of pose samples.
The utility of the CRLB as a design tool in pre-planning an
AUV survey is demonstrated using a synthetic data set for a
boustrophedon survey. In this demonstration, we compare the
CRLB of the improved survey plan with that of an actual
previous hull-inspection survey plan of the USS Saratoga. Survey
optimality is evaluated by measuring the overall coverage area
and CRLB localization precision for a fixed number of nodes in
the graph. We also examine how to exploit prior knowledge of
environmental feature distribution in the survey plan.

I. INTRODUCTION

Recent developments in autonomous navigation have ex-
panded autonomous underwater vehicle (AUV) applications
to such areas as automated ship hull inspection [1], [2],
autonomous underwater cave exploration [3], mapping of ar-
chaeological sites [4], [5], underwater exploration by tracking
chemical plumes [6], and surveys of the underwater envi-
ronment [7]–[9]. For many AUV missions, a typical survey
criterion is to cover the largest survey area possible while
satisfying a user-defined level of acceptable navigation per-
formance. However, a physical limiting constraint in AUV
mission duration is that they are governed by the amount of
battery power that can be carried. Therefore, due to this power
limitation, an optimal path and an efficient survey plan become
a key aspect of the mission planning.

There are numerous examples in the literature for online
path planning for AUVs; for example, obstacle avoidance
using sonar sensing [10] and optimized trajectories for energy
efficiency in the presence of water currents [11], [12]. What
distinguishes our work is that what we are proposing is not
an online method but rather a planning method to be used
as a design tool for operator mission planning—allowing the
AUV operator to make an informed trade off in coverage rate
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Fig. 1. A boustrophedon survey trajectory and its design parameters. The
along-trackline-space, d, and cross-trackline-space, h, determine the pose-
graph node sampling, denoted as an x, in the graph. The nodes, for example,
could represent trajectory samples when optical imagery or sonar data along
the hull are collected.

and localization precision for the typical boustrophedon survey
pattern. In our application, these relative-pose constraints are
derived from a visual simultaneous localization and mapping
(SLAM) system [13]; however, they could as equally come
from Iterated Closest Point (ICP) constraints derived from
sonar [14] or laser [15] scan matching. In this paper, we
define a performance metric based upon information gain as
a measure of the survey’s uncertainty level, and subsequently
use this metric to provide optimal trajectory parameters in the
design phase.

A. Related Work

A recent focus area in the robotics community has been
to use information gain as a measure of uncertainty in order
to improve the navigation and mapping accuracy of mobile
platforms. Typically, information gain refers to either Fisher
Information or Mutual Information, where the Fisher infor-
mation matrix is closely related to the Cramer Rao Lower
Bound (CRLB) [16], and Mutual information is defined from
entropy [17]. In [18], Bingham introduced an approach for
AUV navigation design using the CRLB in the survey design
phase. In [19], Dogancay used the CRLB to investigate the
design of optimal AOA (Angle of Arrival) for Unmanned
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Aerial Vehicle (UAV) tracking. In [20], Sim used the trace
of the Fisher information matrix to determine the information
gain in pose-graph SLAM. This direction of research was
further developed in [21], where Vidal-Calleja’s developed
two different strategies related to information gain measures
together with Mutual information gain.

B. Motivation

In our previous work, we implemented a vision-based
SLAM algorithm, using 1,000 images to map a portion of the
hull of the USS Saratoga aircraft carrier (Fig. 2 and Fig. 9).
This work was done under the auspices of developing an
AUV application for autonomous ship hull inspection [13].
The survey was designed to follow a boustrophedon trajectory
along the hull using a pre-determined along-trackline-space,
d, and cross-trackline-space, h (Fig. 1). The survey track
line distances were determined ahead of time by the AUV
operators based upon the desired percentage overlap in the
imagery, which was naively calculated from the expected
vehicle position without taking into account the pose sam-
pling effect on vehicle trajectory uncertainty. The hull-looking
camera was set to operate at a fixed frame rate throughout
the survey without any consideration to energy expenditure
with each strobed image capture. In retrospect, the previous
survey could have been more efficient with consideration to the
amount of covered survey area, energy efficiency, and desired
precision of localization performance had these criteria been
simultaneously considered in the survey design phase.

C. Outline

Toward a solution to the optimal trajectory design problem,
this paper examines using the CRLB as a metric for evaluating
the effect of cross-trackline-spacing, d, and along-trackline-
spacing, h, on the resulting boustrophedon pose-graph uncer-
tainty. In §II we begin with a derivation of the CRLB assuming
a standard sensor combination for AUVs, and introduce a
metric to measure the graph uncertainty level. We illustrate
the utility of this metric for a simple example case and explain
its interpretation as a planning tool. In §III we then apply this
design tool to the ship hull survey motivation example, and a
comparison between the actual survey and the CRLB improved
one is made. Finally, in §IV we offer some concluding remarks
regarding what directions future work should take to improve
this design tool.

II. CRAMER RAO LOWER BOUND

We assume the AUV moves in a planar boustrophedon
trajectory with a camera, a compass, and an odometry sensor
(e.g., integrated Doppler velocity log (DVL)). We use notation
of xi = [xi, yi]> for the position of the vehicle along the
trajectory at sample time i, and θi for the heading angle of
the robot, where X i = [x>i , θi]> indicates the state of the
vehicle. We use Z to indicate the stacked vector of all sensor
measurements assembled from camera Zc, odometry Zo, and
compass Zh measurements, and X to indicate the stacked
vector of all trajectory samples X i.

Fig. 2. Competing objectives in AUV mission planning. The desired level
of position uncertainty, energy efficiency, and available feature content in the
environment all impact the optimal SLAM trajectory design.

We use the CRLB (see [16] for standard reference)

E
[
[X̂(Z)−X0][X̂(Z)−X0]>

]
≥ J−1 (1)

as a measure of the conservative uncertainty bound for the
pose-graph where J in this equation is the Fisher information
matrix

J = E
[
[∇X ln Λ(X)][∇X ln Λ(X)]>

]∣∣∣
X0

(2)

for the measurement likelihood Λ(X) = p(Z|X).
When we assume that all sensor measurements are indepen-

dent, then the likelihood factorizes to a simple product whom
after which taking its logarithm becomes a summation of all
sensor log-likelihoods

Λ(X) = p
(
Z
∣∣X)

= p
(
Zc

∣∣X)p(Zo

∣∣X)p(Zh

∣∣X) (3)
ln Λ(X) = ln p

(
Zc

∣∣X)+ ln p
(
Zo

∣∣X)+ ln p
(
Zh

∣∣X).
We model the sensor measurements as corrupted by Gaussian
noise with zero mean and covariances Σcij , Σoi , and σ2

hi
,

respectively:

Camera: Zcij
= g(X i,X j) + Wcij

,Wcij
∼ N (0,Σcij

),
Odometry: Zoi

= (xi − xi−1) + Woi
,Woi

∼ N (0,Σoi
),

Compass: Zhi
= θi +Whi

,Whi
∼ N (0, σ2

hi
),

where we assume a standard deviation of ±1.2 cm/s in DVL
velocity in computing the integrated odometry measurement
[22] and a fixed ±1◦ for heading uncertainty (i.e., σhi

= σh =
±1◦).

A. Modeling of the Camera Measurement

For the camera measurement we use a reduced two degree
of freedom (DOF) camera measurement model g(X i,X j)
for the planar survey, which measures the azimuth, αij , and
relative orientation, βij , between nodes i and j, which models
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Fig. 3. Camera measurement noise is modeled as a function of the image
overlap ratio from the pairwise camera measurement.

the camera as a bearing sensor making both sequential and
non-sequential links in the graph.

g(X i,X j) =
[
αij

βij

]
=
[
atan2(yj − yi, xj − xi)

θj − θi

]
The camera sensor measurement noise is modeled so as

to be dependent on the distance between two nodes where
the camera measurement uncertainty Σcij is modeled as a
function of the overlap ratio. The size of the overlap region
is commensurate with the proximity of node i and j; the
closer nodes i and j, the larger the overlap region, resulting
in less uncertainty in the camera measurement. As can been
seen from Fig 3(a), with a fixed camera field of view (FOV)
and the camera scene depth zd, the overlap ratio becomes a
function of the distance of two nodes only. This fixed scene
depth assumption is for the survey of the bottom or the wall
following. For simplicity, we assume the footprint of the cam-
era measurement to be a circle as seen in Fig 3(a), and define
camera measurement threshold Cthresh = 2zd tan(FOV/2)
and the overlap ratio as γ = ||Xi−Xj ||

Cthresh
. Only when the dis-

tance rij is smaller than Cthresh, is the camera measurement
meaningful and the information gain is proportional to the
distance rij . The function that defines the uncertainty of the
camera measurement

σ = ±1◦γ5 (4)

is shown in Fig. 3(b). When the overlap ratio falls below 10%,
the uncertainty increases significantly, and for greater than
50% it remains relatively flat. We assume the camera FOV
to be 40◦, which gives the Cthresh to be 0.7279 m at the
scene depth of 1 m, for example.

B. Fisher Information Matrix

As previously shown in (2), the Fisher Information ma-
trix, J, is simply the expectation of the squared gra-
dient of the log-likelihood evaluated at the true pa-
rameters X0. Using the assumption of sensor measure-
ment independence, the expectation of the gradient from
two different sensor measurement likelihoods is zero (i.e.,
E
[
[∇X ln p

(
Zm

∣∣X)][∇X ln p
(
Zn

∣∣X)]>] = 0 when m 6= n).
Therefore, J reduces to the three simple sensor terms below

J = E
[
[∇X ln p

(
Zc

∣∣X)][∇X ln p
(
Zc

∣∣X)]>]
+ E

[
[∇X ln p

(
Zo

∣∣X)][∇X ln p
(
Zo

∣∣X)]>]
+ E

[
[∇X ln p

(
Zh

∣∣X)][∇X ln p
(
Zh

∣∣X)]>].
By defining information matrices Lc, Lo, and Lh, to cor-
respond to the three terms above, respectively, the Fisher
information J can be written as the summation of the three
information matrices as contributed from each sensor

J = Lo + Lh + Lc.

The detailed general structure for the three information matri-
ces is given in equations (6) and (7).

Unlike the odometry and heading sensors, the camera in-
formation matrix, Lc, is a function of geometry and can be
written in terms of the camera observation model gradient as

Dij =
∂g(X i,X j)

∂X i
Σ−1

cij

∂g(X i,X j)
∂X j

>
. (5)

While the information matrix of the odometry and heading
sensors depend only on the sensor uncertainty and integration
interval, (5) makes it clear that the camera information is a
function of the sensor uncertainty and the trajectory geometry.
In particular, Lc will exhibit nonzero elements in the off
diagonal in the Fisher information matrix as the camera
measurement can result from non-sequential nodes in the
graph.

C. CRLB Derivation Example

In this section, we examine a simple pose-graph consisting
of three nodes as depicted in Fig. 4, and present a detailed
calculation of the three sensor information matrices. In this
example, two sequential nodes, (1, 2), and (2, 3), are con-
strained by the odometry sensor measurement. On each node,
we have compass information, but we only have the camera
measurement between nodes 2 and 3, which is depicted by the
green line in Fig. 4. As we have three elements x, y, and θ
in our state representation, the three information matrices will
each be 9× 9 matrices.

Under this scenario, Lc is calculated as

Lc =

D12 + D13 −D12 −D13

−D12 D12 + D23 −D23

−D13 −D23 D13 + D23


=

03×3 03×3 03×3

03×3 D23 −D23

03×3 −D23 D23





Lo + Lh = E
ˆ
[∇X ln p

`
Zo

˛̨
X
´
][∇X ln p

`
Zo

˛̨
X
´
]>
˜

+ E
ˆ
[∇X ln p

`
Zh

˛̨
X
´
][∇X ln p

`
Zh

˛̨
X
´
]>
˜

=

26666666666666664

Σ−1
o2 02×1 −Σ−1

o2 02×1 03×3 · · · 03×3

01×2 1/σ2
h1 01×2 0

−Σ−1
o2 02×1 Σ−1

o2 + Σ−1
o3 02×1 03×3 · · · 03×3

01×2 0 01×2 1/σ2
h2

03×3 03×3

. . .
...

...
...

...
...

...
...

... · · · Σ−1
on−1 + Σ−1

on
02×1 −Σ−1

on
02×1

· · · 01×2 1/σ2
hn−1

01×2 0

03×3 03×3 · · · −Σ−1
on

01×2 Σ−1
on

01×2

· · · 01×2 0 01×2 1/σ2
hn

37777777777777775
(6)

Lc = E
ˆ
[∇X ln p

`
Zc

˛̨
X
´
][∇X ln p

`
Zc

˛̨
X
´
]>
˜

=

2666666666666666664

nX
k=1

D1k −D12 −D13 · · · −D1n

−D12

nX
k=1

D2k −D23 · · · −D2n

...
...

. . .
...

...

−D1(n−1) −D2(n−1) · · ·
nX

k=1

D(n−1)k −D(n−1)n

−D1n −D2n · · · −D(n−1)n

nX
k=1

Dnk

3777777777777777775

(7)
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Fig. 4. A simple example of a three node graph to illustrate the derivation
of the information matrices in the CRLB calculation.

and Lo + Lh =
Σ−1

o2
02×1 −Σ−1

o2
02×1 03×3

01×2 1/σ2
h 01×2 0

−Σ−1
o2

02×1 Σ−1
o2

+ Σ−1
o3

02×1 −Σ−1
o2

02×1

01×2 0 01×2 1/σ2
h 01×2 0

03×3 −Σ−1
o2

02×1 Σ−1
o3

02×1

01×2 0 02×1 1/σ2
h

 .

Summing all terms, the Fisher information matrix is calcu-
lated to be J = Lh + Lo + Lc, which is singular because
it contains only relative-pose information (i.e. camera and
odometry measurements are unaffected by a linear translation).
Therefore, we fix the location of the first node in the graph
by setting its information to be infinity (in practice a very
large number like 106), so that the other node uncertainties
are relative to the first node position.

Taking the inverse of the resulting J matrix yields the 9×9
covariance matrix S

S = J−1 =

S11 S12 S13

S12 S22 S23

S13 S23 S33



where Sii indicates the covariance of the ith node and Sij the
ith, jth cross-covariance.

D. Effect of the Design Parameters

We examine the CRLB by evaluating the inverse of the
Fisher Information matrix, which gives the covariance matrix,
S, of the overall graph. The determinant of each covariance
matrix sub-block, Sii, reveals the uncertainty of each node in
the graph. We evaluate the maximum xy standard deviation
for all nodes in the graph (max

i

4
√
|Sxyii

|) by looking at the
Sxy sub-block for each node and use this as a metric for the
level of xy uncertainty in the entire trajectory. Figures 5 and 6
depict this survey metric for a more extended case considering
a 40 node trajectory.

With respect to the odometry sensor uncertainty on the ith

node, for example, Σoi
will increase as the along-trackline-

space, d, increases because it accumulates DVL uncertainty
over longer distances. On the other hand, the reduction of the
cross-trackline-space, h, will enhance the overall pose-graph
link structure as the camera can make a larger number of non-
sequential links to other tracklines. In terms of the camera
measurements, small d and h values enable a higher density
of camera measurements, thereby reducing the uncertainty;
however, this also reduces the size of the survey coverage
area as depicted in plans A, and D of Fig. 5(a). Therefore we
examine the relation of the uncertainty and the survey coverage
with respect to the design parameters to achieve an optimal
balance given these competing considerations.

The two graphs in Fig 5(b) show the relation of the camera
measurement with the two independent design parameters
d and h. As can be seen in Fig. 5(b), the maximum pose
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Fig. 5. Change of maximum uncertainty with respect to the altitude normalized along-trackline-space, d, and the cross-trackline-space, h. Example trajectory
design paths are depicted in (a).
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The letters from A to E indicate each sample plan in Fig. 5. The curved
lines with numbers indicate the altitude normalized coverage area of the
plan, while the contours underneath show the altitude normalized maximum
standard deviation from the CRLB. The colorbar on the left side represents
the uncertainty level.

uncertainty does not grow rapidly until it passes the camera
measurement threshold, Cthresh. Once the cross-trackline-
space exceeds that of the camera measurement threshold, it no
longer makes cross-track links, which significantly increases
the maximum trajectory uncertainty (e.g. plan E). Therefore,
without considering the coverage area, it would be reasonable
to select the value of d and h according to the camera
measurement threshold, Cthresh, which is a function of the
camera’s intrinsic parameters, field of view, and scene altitude.
However, since the uncertainty and coverage area should
be evaluated simultaneously, a contour plot containing both
factors is plotted as in Fig. 6, which can be used to analyze
and optimally plan the survey.

In the contour plot, each sample path is marked with capital
letters from A to E. Path C has been selected to be optimal in
that it achieves the minimum uncertainty for coverage of the

largest area among the parameters for the same uncertainty
level. With plan C (d = 0.7 and h = 0.5), an altitude
normalized max standard deviation of 0.017 is estimated for
an altitude normalized total coverage area of 10.4.

III. SIMULATION RESULT

We examine our previous hull-inspection survey results of
the USS Saratoga [13] using our newfound CRLB analysis,
and look for possible improvements that we could have made
to the original survey trajectory by analyzing the relationship
between the CRLB and survey design parameters. We continue
to use the maximum of the covariance matrix of all nodes
in the graph as our uncertainty metric (max

i

4
√
|Sxyii

|), which
yields the contour plot depicted in Fig. 7.

A. Improvement in the Saratoga Survey
The previous USS Saratoga survey was planned using

along-trackline-space, d, and cross-trackline-space, h, which
were calculated based upon the desired percentage of image
overlap without taking into account any effect on pose un-
certainty. The vehicle survey was configured for a constant
distance from the ship hull, maintaining a standoff distance of
1.5 m from the hull. To maintain a cross-track image overlap
percentage of 54%, h was calculated to be 0.5 m. We did
not intentionally control the along-trackline-space d, rather
we set the camera to run at a fixed frame rate of 1 fps,
which at a forward speed of 0.2 m/s resulted in an along-track
sample spacing of approximately 0.2 m. With d = 0.2 m and
h = 0.5 m, a large along-track image overlap ratio of 81.68%
was achieved for the overall survey. According to the present
CRLB analysis, the minimum achievable uncertainty for this
survey is calculated to be 0.0141 m using 1060 nodes to cover
a 89.40 m2 area. This previous survey plan is denoted with the
letter G in Fig. 7.

To calculate the optimal survey parameters, the uncertainty
and the coverage area are evaluated with respect to different
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Fig. 7. Parameter evaluation for saratoga data. Point G indicates the previous
survey plan. We propose two improved plans marked as H and I.

sets of the design parameters as in Fig. 7. Our goal is to find
the set of parameters that covers the largest area with the
lowest uncertainty. Here, by examining the contour plot of
Fig. 7, we can find two sets of parameters that will improve
the result, which are summarized in Table I below.

TABLE I
OPTIMAL USS SARATOGA SURVEY PARAMETERS

Plan d (m) h (m) max 4
p
|Sxyii

| (m) Area (m2)
G 0.2 0.5 0.0141 89.4
H 0.45 0.3 0.0103 132.6 (48.3%)
I 0.5 0.6 0.0448 293.5 (228.3%)

The first plan, H, reduces the uncertainty while simulta-
neously increasing the coverage area. This strategy moves
the original survey point G in the contour plot down toward
the lowest uncertainty contour, then right toward the largest
possible coverage area for that level of uncertainty. This plan
provides 26.9% reduced uncertainty while covering 48.3%
more area. On the other hand, considering the fact that the
survey is already highly conservative and that the uncertainty is
significantly small, we could accept the increase of uncertainty
for the purpose of achieving a dramatically larger survey
coverage. This strategy is illustrated by point I on the contour
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Fig. 9. The area without enough feature distribution is revealed from the
previous survey. The improved survey plan is proposed as in (a). Ellipsoids at
each node in (a) illustrates 1− σ contour of the position uncertainty, which
are inflated by 10 for visibility.

graph where the uncertainty increases to 0.0448 m, (but is still
in absolute terms small) while covering 228.3% more area.
The two sample paths generated from these two improved
surveys are illustrated in Fig. 8.

B. Exploiting Feature Distribution in the Survey Design

The distribution of features and texture in the environment
is a highly dominant factor in the SLAM sensor measurement
quality. For example, for the vision system the distribution of
features in the environment is critical to registration quality,
and it will determine the performance of the camera mea-
surement. However, real environments typically do not exhibit
uniform feature distributions. There therefore exist areas in the
survey where the measurement might not be reliable due to
feature-less regions (e.g., sand areas, empty regions or areas
of low texture). Hence, when we have information about the
environment prior to our survey, or when we re-plan the same
area with data from a previous survey, we can exploit this
knowledge in our survey design in order to cover more area
by reducing our pose sampling in any featureless areas. In the



case of the ship hull survey, many featureless region exists
and fail to provide relative-pose constraints. By removing
nodes from those areas that are expected to be inefficient, we
could use the saved energy from the removal of the nodes to
conduct further exploration, despite the expense of temporarily
increased uncertainty over that region.

The simulated result of the removal of nodes with the same
design parameters of plan I (Fig. 8) is provided in Fig. 9. From
the result of the previous survey in Fig. 9(b), we know that
the area of 10 m by 2 m is a largely feature-less region, which
is equivalent to 66 nodes in the graph. Therefore, as can be
seen Fig. 9(a), these 66 nodes were removed from the middle
section, extending the total path length but maintaining an
uncertainty level equivalent to that in plan I.

IV. CONCLUSION

This paper described a method for improving the localiza-
tion performance of a pose-graph SLAM methodology using
sequential/non-sequential relative-pose constraints. A conser-
vative static uncertainty bound was examined by calculating
the CRLB in the AUV survey design phase, and thereby
determining the uncertainty level of the graph. A graphical
design tool based upon contour plots of coverage area and
maximum uncertainty was developed to interpret the effects of
the design parameters on the survey coverage and uncertainty.
Using this tool, design parameters were proposed to meet the
purpose of the survey as a pre-planning instrument. A method
to exploit the environmental information for use in the survey
was also proposed.

In this preliminary result, we assumed a fixed number of
nodes in the graph and found the two design parameters for
a simple boustrophedon trajectory. Future work will include
modeling additional terms important to the survey design, such
as the total amount of time of the mission or the total energy
limitation of the vehicle. The total number of nodes in the
graph should be variable as a function of the amount of energy
the vehicle can expend and the overall trajectory path length.
Similar contour plots could be generated with this information
on it, and we could use the same graphical method to optimize
the survey in the pre-planning phase.
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